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We examine the collective dynamics of polarizable, Brownian, sedimenting rods of
high aspect ratio. Previous work of Koch and Shaqfeh (J. Fluids Mech., vol. 209, 1989
pp. 521–542) has shown that in the absence of Brownian motion, sedimenting
suspensions of rods are unstable to concentration fluctuations and form dense
streamers via interparticle hydrodynamic interactions. Recently, Saintillan, Shaqfeh &
Darve (Phys. Fluids, vol. 18 (121701), 2006b p. 1) demonstrated that electric fields can
act to stabilize these non-Brownian suspensions of polarizable rods through induced-
charge electrokinetic rotation, which forces particle alignment. In this paper, we
employ a mean-field linear stability analysis as well as Brownian dynamics simulations
to study the effect of thermal motion on the onset of instability. We find that in
the absence of electric fields, Brownian motion consistently suppresses instability
formation through randomization of particle orientation. However, when electric
fields are applied, thermal motion can act to induce instability by counteracting the
stabilizing effect of induced-charge orientation.

1. Introduction
Due to the long-range multi-body interactions characterizing low Reynolds number

particulate sedimentation, complex collective phenomena frequently arise and are
in general poorly understood. Suspensions of orientable particles are of particular
interest because they exhibit physics inherently different than those of sphere sus-
pensions. Specifically, when sedimenting under a gravitational field, initially isotropic
suspensions of rigid rod-like particles are unstable to concentration fluctuations, and
thus dense clusters of particles grow as a consequence of long-range hydrodynamic in-
teractions. This instability was first predicted in a paper by Koch & Shaqfeh (1989), in
which they describe the instability mechanism. In short, due to hydrodynamic interac-
tions between rods, dense clusters will sediment faster than less-dense clusters, creating
a hydrodynamic disturbance between regions of differing density. This disturbance
creates a hydrodynamic torque such that it orients particles in the less-dense regions
towards the denser cluster. As the particles sediment, these oriented particles fall
towards the regions of higher concentration, amplifying the perturbation. Koch and
Shaqfeh mathematically described this phenomenon using a linear stability analysis
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and mean field theory and showed that horizontal wave perturbations are unstable for
sufficiently large container size, and become increasingly unstable with wavelength.

Although experimental evidence of the instability formation exists (see, for instance,
the work of Herzhaft & Guazzelli 1999) there are a number of differing qualitative
characteristics between the experimental observation and the cluster formation
predicted by the theory of Koch and Shaqfeh. For instance, contrary to what is
seen in experiments, the stability analysis implies a single dense streamer on the scale
of the container width and velocity fluctuations that diverge on the same length scale.
In fact, experimental observation of sedimentation reveals the presence of multiple
streamers and bounded fluctuations, indicating that additional physics is needed to
supplement the original analysis. Saintillan et al. have recently attempted to resolve
the differences between theory and experiment by examining the effect of stratification
(Santillian, Darve & Shaqfeh 2006a) and container walls (Saintillan, Darve & Shaqfeh
2006a) on suspension stability and cluster formation. They find that stratification and
wall effects induce a wavenumber selection that results in multiple streamers for a
fixed container size.

There has recently been much interest in controlling suspension microstructure using
externally applied electric fields (Saville 1977; Smith et al. 2000; Chen et al. 2001;
Rose et al. 2007). Because polarizable rod-like particles suspended in an electrolyte
tend to align with an electric field, at sufficient field strengths they are able to resist
the hydrodynamic torque created by density fluctuations during sedimentation, and
thus the suspension can be stabilized. This stabilization was studied by Saintillan,
Shaqfeh & Darve (2006b), who concluded that a suspension will indeed stabilize,
i.e. concentration fluctuations will not amplify, when the rotational velocities induced
by the instability mechanism are balanced by the electrokinetically induced rotation.
Saintillan’s stability analysis, however, neglects the effects of Brownian motion that
becomes an important phenomenon at colloidal length scales.

Recent advances in biological detection applications using functionalized
submicrometer metallic bar codes (see Nicewater-Pena et al. 2001) (to identify a
sequence-specific hybridization, for instance) has heightened interest in examining
colloidal rod suspensions. For example, Rose et al. (2007) developed analytical models
and performed experiments to examine the translation and rotation of polarizable
rods in electric fields. Their work, however, considers isolated particles and neglects
collective effects. These collective phenomena include hydrodynamic interactions,
suspension stability to concentration fluctuations, Brownian motion and coupled
electrokinetics. Thus, to fully understand suspension behaviour, one must revisit the
stability analysis to include the coupled effects of Brownian motion and electrokinetic
rotation.

Herein we will use a linear stability analysis similar to that of Saintillan, Shaqfeh &
Darve, combined with Brownian dynamics simulation, to evaluate the effect of these
collective phenomena on suspension stability. In the remainder of § 1 we describe
past work on induced charge electrokinetics and fibre dynamics. We then proceed to
develop the linear stability analysis in § 2 and outline the simulation procedure in § 3.
In § 4, we present the results of our analysis and discuss their implications.

1.1. Induced charge electrokinetic phenomenon

Squires & Bazant (2004) developed the framework for describing the electrokinetic
phenomena related to polarizable particles or surfaces in contact with electrolytes.
When subjected to an applied electric field, the charge induced on a solid surface
causes a migration of counter-ions, resulting in the formation of an electric double
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layer (EDL). The time scale for the polarization of the double layer is τp = εL/(σλD),
where σ is the conductivity of the suspending medium, and is typically of the order
of 10−6 s (Rose et al. 2007). The applied electric field then exerts a force on the charge
layer, generating a flow relative to the solid surface. When characterizing a fixed
surface, this phenomenon is known as induced-charge electro-osmosis (ICEO), but is
alternatively described as induced-charge electrophoresis (ICEP) when characterizing
a particle that is mobile in the electrolytic medium. The size of the diffuse charge
layer surrounding the surface in a symmetric electrolyte is given by the Debye length

λD =

√
εkBT

2n0(ze)2
,

where ε is the dielectric permittivity of the solution, kBT is the thermal energy, n0 is
the bulk ion concentration and ze is the charge of a disassociated ion. If the Debye
screening length is sufficiently small, one can approximate the net fluid motion at
the edge of the EDL as a ‘slip’ velocity modelled by the Helmholtz–Smoluchowski
equation that relates the surface slip to the potential drop across the EDL ζ , the fluid
viscosity μ and the component of the electric field E in the direction t tangent to the
surface:

uS = −εζ

μ
(E · t)t.

Determination of the slip velocity uS via the calculation of the zeta potential
provides the coupling between the equations governing the electric potential and
those describing fluid flow. As shown by Squires & Bazant (2005) and Fair &
Anderson (1989), the electric potential within the electrolyte volume V must satisfy
Laplace’s equation

∇2φ = 0 r ∈ V

with the boundary conditions at the EDL edge Γ that express no ion current into
the surface and the decay of the electric field to the background applied field E∞:

n · ∇φ = 0 r ∈ Γ,

−∇φ → E∞ r → ∞.

Once the electric potential is known, the zeta potential is obtained as ζ (r) = φ0 −φ(r),
where φ0 is the native surface potential.

Santillian, Darve & Shaqfeh (2006b) solved the electric problem and slip flow
problem analytically for prolate spheroids of aspect ratio A using the method of
singularities found in Chwang & Wu (1974) and Han & Yang (1996). They found
that for particles oriented in the direction p with no native surface potential, the
surface slip velocity as given by the Helmholtz–Smoluchowski equation may be
written as

uS(r) = − ε

μ
(r · G( p) · E∞)[(I − nn) · G( p) · E∞],

where G is a geometric tensor that depends on the particle aspect ratio and n is a
unit vector normal to the spheroid surface. G is given by (see Santillan et al. 2006b)

G( p) = G‖ p p + G⊥(I − p p), (1.1)

G‖/⊥ = −4β‖/⊥
(A2 − 1)3/2

A
, (1.2)
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β‖ =

[
−4A(A2 − 1)1/2 + 2 ln

(
A + (A2 − 1)1/2

A − (A2 − 1)1/2

)]−1

, (1.3)

β⊥ = −
[
4(A2 − 1)3/2

A
− 2A(A2 − 1)1/2 + ln

(
A + (A2 − 1)1/2

A − (A2 − 1)1/2

)]−1

. (1.4)

1.2. Fibre dynamics

In this work, we consider the sedimentation dynamics of axisymmetric slender particles
of length 2L and diameter 2b (aspect ratio A= L/b) suspended in a fluid of viscosity μ.
Each particle’s position and orientation may be described in terms of a centre of mass
position x and director vector p. For large aspect ratios, the motion of each particle
is described by a modified slender-body theory of Batchelor (1970) Santillan et al.
(2006b), which, to O(1/ ln(2A)), relates the centre of mass and rotational velocities
ẋ and ṗ to a distribution of Stokeslets f along the particle length parametrized by
s ∈ [−L, L]:

ẋ + s ṗ − uD(x + ps) + uS(s) =
ln(2A)

4πμ
(I + p p) · f (s). (1.5)

In the above equation, uD is the net hydrodynamic disturbance velocity acting at
the point x + ps due to the motion of all other fibres in the suspension, and uS is
the linearized slip velocity averaged across a particle’s cross-section. uS is given by
Saintillan et al. (2006d) to O(A−2) as

uS(s) = − ε

μ
s( p · G′ · E∞)G′ · E∞, (1.6)

where G′ = G‖ p p + 1/2G⊥(I − p p).
The integral of (1.5) over the fibre length relates the centre of mass velocity to the

net force on the particle F =
∫ L

−L
f (s) ds

ẋ =
1

2L

∫ L

−L

uD(x + ps) ds +
ln(2A)

8πμL
(I + p p) · F, (1.7)

while the integral of the cross product of (1.5) with p yields an equation for the

rotational velocity in terms of the net applied torque T =
∫ L

−L
s p ∧ f (s) ds

ṗ =
3

2L3
(I − p p) ·

∫ L

−L

[uD(x + ps) − uS(s)]s ds − 3 ln(2A)

8πμL3
p ∧ T . (1.8)

For axisymmetric particles sedimenting under gravity, the total force F consists
of a gravitational component Fg and a Brownian component FB . There is no net
electrokinetic force due to symmetry. The total torque consists of a small electro-
rotational torque that is neglected (see Santillan et al. 2006b) and the Brownian
torque TB . The hydrodynamic disturbance uD at any point in the fluid r is given by
the net flow due to the Stokeslet distributions along each of the N fibres,

uD(r) =
1

8πμ

N∑
j=1

∫ L

−L

J(r − xj − s pj ) · f j (s) ds,

where J is the appropriate Green’s function of the Stokes equations, which depends
on the geometry of the suspension boundaries. The solution to this set of equations
for each fibre in the suspension fully describes the evolution of the microstructure for
slender bodies.
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2. Mean field theory and stability analysis
We now develop a mean field theory that describes the suspension as a continuum
for the purpose of a linear stability analysis. We begin the linear stability analysis
with the particle conservation equation, which describes the evolution of the particle
density field c(x, p, t), where

∫∫
c d p dV = Np , the number of particles. Neglecting

hydrodynamic corrections in the rotational (dr ) and centre of mass (D) diffusivities,
the conservation equation is

∂c

∂t
+ ∇ p · ( ṗc) + ∇x · (ẋc) − dr∇2

pc − ∇x · D · ∇xc = 0. (2.1)

where the ṗ and ẋ arise from the deterministic portions of (1.7) and (1.8) (i.e.
neglecting the Brownian force and torque). For a long, slender rod with aspect ratio
A, the single-particle diffusivities are given by slender-body theory to O(ln(2A)−1) as
(Kim & Karrila 1991; Larson 1999)

dr =
3kBT ln(2A)

8πμL3
, D =

kBT ln(2A)

8πμL
[I + p p] .

Following Koch & Shaqfeh (1989) and Saintllian et al. (2006a), hydrodynamic
interactions between particles are captured through a mean field approximation
to the point-particle Stokes equation, in which a disturbance flow is driven by a
gravitational body force through a spatially varying local density:

−μ∇2u + ∇p = Fg

∫
c d p. (2.2)

The stress coupling terms arising from ICEP, Brownian motion and extra
hydrodynamic stress due to the particle rigidity have been deliberately omitted from
(2.2), as the instability mechanism arises solely from the buoyant force coupling
between concentration perturbations and the mean flow field. Additionally, it can
be shown that in dilute solutions, the induced rotation of a particle external to that
of buoyancy coupling is dominated by the electrophoretic slip velocity, while the
rotation induced by the ICEP hydrodynamics from neighbouring particles decays
as r−3. Because the key mechanism of the concentration instability arises from
particle rotation towards regions of higher density, we shall only consider the primary
rotational effect of ICEP while neglecting its hydrodynamic coupling. We expect the
additional neglected stresses will bring about a local viscosity increase in the regions
of high density but will not significantly alter the onset of instability.

Within the point particle approximation, a fibre’s translational velocity is taken as
the sum of its dilute sedimentation velocity and the net disturbance velocity evaluated
at its centre of mass: ẋ = U s +u(x), where U s = ln(2A)/8πμL(I + p p)Fg for a slender
particle. The rotational velocity has contributions from both the electrophoretic slip
velocity and the local disturbance flow in the fluid. Assuming a linear disturbance
velocity gradient ∇u on the scale of the particle length, the rotational velocity is given
by a modified Jeffery’s equation:

ṗ = ṗICEP + (I − p p) · E(x) · p + Ω(x) · p, (2.3)

where E and Ω are the symmetric and antisymmetric parts of ∇u, respectively, and
ṗICEP is obtained by integrating the term in (1.6) corresponding to the electrophoretic
slip:

ṗICEP =
εG‖G⊥

2μ
( p · E∞)(I − p p) · E∞.
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We take as our base state a spatially homogeneous dispersion that satisfies the
concentration evolution equation, c = nΨ ( p), where n is the suspension average
number density of particles and Ψ is only a function of orientation. The base
state drives no net disturbance velocity, so u =0, and ṗ = ṗICEP . The steady solution
for Ψ is given by (Santillan et al. 2006d)

Ψ (φ) = N exp

[
πL3εE2

∞
3kBT ln(2A)

G||G⊥ cos(2φ)

]
, (2.4)

where φ is the angle between the particle’s orientation vector p and the electric field,
and N is a constant of normalization such that

∫
Ψ d p =1. For dilute conditions in

the absence of electric fields, Ψ = (4π)−1, and the suspension is isotropically oriented.
To conduct the linear stability analysis, we introduce a density perturbation of wave-

vector k and (small) magnitude δ into (2.1) of the form c = nΨ +nδc̃(k, ω, p)ei(k · x−ωt).
As in previous work (Koch & Shaqfeh 1989; Santillan et al. 2006b), only horizontal
plane-waves (i.e. the most unstable waves) are considered such that k · ẑ = 0 and ẑ
is a unit vector in the direction of gravity. The growth rate ω will determine the
stability of the suspension to this perturbation, and will be obtained as the solution
to an eigenvalue problem. The induced perturbation drives a disturbance flow given
by (Hasimoto 1958)

u = nδ
e−iωt

μk2

(
I − kk

k2

)
· Fg

∫
c̃ d p. (2.5)

The gradient of (2.5) drives fibre rotation, and from (2.3) the rotational velocity
becomes

ṗ = ṗICEP + nδeik · x−iωt ṗDIST

ṗDIST =
i

μk2
( p · k) (I − p p)

(
I − kk

k2

)
· Fg

∫
c̃ d p.

⎫⎪⎬⎪⎭ (2.6)

Substituting c, ṗ and ẋ into the conservation equation, subtracting off the base
state equation for c̃, and keeping terms to O(δ) yields an integro-differential eigenvalue
equation for ω,

−iωc̃ + ∇ p · (c̃ ṗICEP ) + n∇ p · (Ψ ṗDIST ) + ik · U sc̃ − dr∇2
pc̃ + k · D · kc̃ = 0, (2.7)

where a complete description of (2.7) requires the following relations:

∇ p · ṗICEP =
εG||G⊥E2

∞
2μ

e∞ · (I − 3 p p) · e∞, (2.8)

∇ p · ṗDIST =
−3i

μk2
( p · k) p ·

(
I − kk

k2

)
· Fg

∫
c̃ d p, (2.9)

∇ pΨ = h( p)(I − p p) · e∞, (2.10)

h( p) = N
4πL3εE2

∞
3kBT ln(2A)

( p · e∞) exp

{
πL3εE2

∞
3kBT ln(2A)

G||G⊥ cos(2φ)

}
, (2.11)

and where |E∞|e∞ = E∞. Equations (2.7) and (2.11) are then non-dimensionalized
using the length scale lc = 2L, the total particle length, and a sedimentation time scale
ts =8πμL2/|Fg| ln(2A), the time for a particle aligned with gravity to sediment its
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length. After substitution and manipulation, (2.7) becomes

0 = −iωc̃ +
iβΨ

k2
( p · ẑ)( p · k)

∫
c̃d p

+
1

2
HG||G⊥

{[
1 − 3( p · e∞)2

]
c̃ + ( p · e∞)e∞ · ∇ pc̃

}
− iβh( p)

3k2
( p · k) [(e∞ · ẑ) − ( p · e∞)( p · ẑ)]

∫
c̃d p

− i

2
( p · k)( p · ẑ)c̃ − 3Pe−1∇2

pc̃ +
1

4
Pe−1

[
k2 + ( p · k)2

]
c̃, (2.12)

where we have used k · Fg = −|Fg|k · ẑ = 0 and defined the following dimensionless
constants:

β =
6π

ln(2A)
nl3c ,

H =
8πL2εE2

∞
|Fg| ln(2A)

,

Pe−1 =
kBT

|Fg|L.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

Each constant defined above has an important physical meaning. The constant β is
essentially a dimensionless concentration parameter, H represents the ratio between
induced electrokinetic rotation and buoyancy forces, and the inverse Péclet number
Pe−1 describes the relative importance of thermal motion and gravity. The role of
gravity or buoyancy in both H and Pe−1 is to represent the mechanism for instability
formation through sedimentation-driven hydrodynamic interactions. For example, to
examine solely the effect of varying electric field strength on suspension stability, one
would vary H at fixed Pe−1 and β .

For simplicity in the following sections, we will consider only electric fields oriented
in the direction of gravity, e∞ = ẑ, and heretofore all equations will be presented in a
dimensionless form.

2.1. No electric field: perturbation solution

We begin the stability solution by examining the effect of Brownian motion on
suspension stability in the absence of electric fields. The effects of thermal motion
will be two-fold; it will act to randomize the rotational velocities of the sedimenting
fibres, opposing the hydrodynamic rotation that drives the concentration instability,
as well as driving particles from regions of high density (streamers) to regions of
low density. Both effects will tend to stabilize the suspension by suppressing streamer
growth rates. In the absence of electric fields (E∞ = 0), the base orientation state in
dilute suspensions is isotropic, Ψ =(4π)−1. Equation (2.12) therefore becomes

−iωc̃ +
iβ

4πk2
( p · ẑ)( p · k)

∫
c̃d p − i

2
( p · k)( p · ẑ)c̃ − 3Pe−1∇2

pc̃

+
1

4
Pe−1

[
k2 + ( p · k)2

]
c̃ = 0. (2.14)

For weak thermal motion relative to the gravitational force (corresponding to large
fibres), c̃ and ω may be obtained as perturbation expansions in the limit of small Pe−1:

c̃ = c̃0 + Pe−1c̃1 + Pe−2c̃2 + · · ·
ω = ω0 + Pe−1ω1 + Pe−2ω2 + · · · . (2.15)
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It should be noted that this perturbation expansion is singular because in the ab-
sence of Brownian motion (Pe−1 = 0) we find only a single eigenvalue ω(1) as opposed
to a set of eigenvalues {ω(i)} demanded by (2.14). However, we expect the effect of
Brownian motion to be stabilizing and will assume that all eigenvalues neglected by
the perturbation solution correspond to stable modes with Im(ω(i)) < 0, i > 1. This
assumption will be verified numerically in a subsequent section and only the correction
to ω(1) will be evaluated at present. Substituting (2.15) into (2.14), at O(Pe0) we
obtain (

ω0 +
1

2
( p · k)( p · ẑ)

)
c̃0 =

β

4πk2
( p · ẑ)( p · k)

∫
c̃0 d p. (2.16)

A solvability condition for the eigenvalue ω0 may be obtained by integrating (2.16)
over all particle orientations and discarding the normalization constant

∫
c̃0 d p:

1 =
β

4πk2

∫
( p · ẑ)( p · k)

(ω0 + 1
2
( p · k)( p · ẑ))

d p. (2.17)

The first eigenfunction c̃0 is given by (2.16) to within a numerical constant. Equation
(2.17) can be solved numerically for ω0 or alternatively, asymptotically evaluated in
the limit of small k as done by Saintllian et al. (2006a), giving

ω0 = ±i

√
β

30
− iβ

1680

(
30

β

)3/2

|k|2 + O(|k|3). (2.18)

Defining the functions f ≡ iβ/4πk2( p · ẑ)( p · k) and g ≡ −1/2( p · k)( p · ẑ), and the
linear operators L0 ≡ (ig/f +

∫
d p) and L1 ≡ 1/f (−3∇2

p + 1/4[k2 + ( p · k)2]), as well

as the inner product 〈◦, •̄〉 =
∫

◦•̄d p (where •̄ denotes the complex conjugate of •),

we can succinctly write the equation describing the first correction ω1 at O(Pe−1) to
the eigenvalue ω as

−iω0

c̃1

f
− iω1

c̃0

f
+ L0c̃1 + L1c̃0 = 0. (2.19)

To proceed, we take the inner product of each term in (2.19) with c̃0, giving〈
L0c̃1, ¯̃c0

〉
+
〈
L1c̃0, ¯̃c0

〉
= iω0

〈
c̃1

f
, ¯̃c0

〉
+ iω1

〈
c̃0

f
, ¯̃c0

〉
〈
c̃1, L0

¯̃c0

〉
+
〈
L1c̃0, ¯̃c0

〉
=

iω0

〈
c̃1,

c̃0

f

〉
+
〈
L1c̃0, ¯̃c0

〉
=〈

L1c̃0, ¯̃c0

〉
= iω1

〈
c̃0

f
, ¯̃c0

〉
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the above equation, we have used the fact that the operator L0 is self-adjoint over
the inner-product space defined. The eigenvalue correction ω1 can then be determined
in terms of the known eigenfunction c̃0 as ω1 = −i〈L1c̃0, ¯̃c0〉/〈c̃0/f, ¯̃c0〉, which for
small |k| has the solution

ω1 = −9i − 3i

7ω2
0

|k|2 − 5i

14
|k|2 + O(|k|3). (2.20)

From (2.20) it is evident that the first-order effect of Brownian motion is to reduce
the growth rate of the instability. The validity of the perturbation solution will be
shown in the next section by comparing to our numerical results.
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It is instructive to separate the respective contributions from centre of mass and
rotational diffusivity for ω1. As written in (2.20), the first two terms arise from the
rotational diffusion, while the third term arises from the centre of mass term. It
can therefore be seen that the primary effect of rotational Brownian motion is to
reduce the instability growth rate at constant wavenumber by randomizing particle
orientations, while the centre of mass diffusion tends to disperse high-frequency
density fluctuations by reducing the wavenumber at which the instability appears.
At finite Péclet number and for sufficiently small wave-numbers (large wavelengths),
centre of mass dispersion alone cannot suppress the onset of instability because
particles cannot diffuse away from large regions of higher density as quickly as they
are attracted through gravity-driven hydrodynamic interactions.

2.2. Spectral solution

While (2.14) permits a solution for weak thermal motion, the additional terms in (2.12)
corresponding to ICEP effects render a perturbation strategy impossible. We therefore
seek a numerical solution to the eigenvalue set {ω(i)} by expanding the function {c̃(i)}
in an appropriate basis set of functions. Because the eigenfunctions of the density
disturbance are defined on the unit sphere and are periodic and continuous, we
choose the spherical harmonics as our basis set: c̃ =

∑q=∞
q=0

∑s=q

s=−q aqsY
s
q . Truncating

this expansion at q = Q, substituting into (2.12) and taking the inner product with
respect to Y s ′

q ′ give a discrete representation for the eigenvalue set in terms of a
matrix equation, which may be written as M · a = ωa. The eigenvalues of the matrix
M are therefore an approximation to the first (Q + 1)2 eigenvalues of the set {ω(i)}.
We present in the Appendix the algebraic details related to the spectral solution.
We find, consistent with our previous assumption, that a maximum of one unstable
eigenmode (Im(ωi) < 0) exists for all values of H and Pe−1 examined. Only the first
eigenvalue therefore needs to be accurately computed and generally converges with
Q at a truncation number of Q =30. As the inverse Péclet is increased, the truncation
number necessary for convergence of the first eigenvalue decreases substantially,
although in our solutions we always choose Q > 20. Convergence is enhanced with
increasing Pe−1 because the dominance of the spherical Laplacian operator, ∇2

pc̃, in
the solution of eigenvalue (2.12) increases as well, and the spherical harmonics are
eigenfunctions of this operator.

We present in figure 1 the perturbation results derived in the previous section
compared to the (converged) spectral solution obtained with 25 harmonics. The
perturbation result is clearly useful only for Pe−1 � 0.02 and k∗ � 0.5. It is useful, how-
ever, for determining the first-order effects of Brownian motion on suspension stability.
In all subsequent sections the spectral solution will be used unless otherwise noted.

3. Brownian dynamics simulation
3.1. Base equations for fibre dynamics

To test the results of the mean field stability analysis and more completely analyse
the stability of our system, we have performed Brownian dynamics simulations of a
periodic suspension. Our simulations resolve individual fibre dynamics, hydrodynamic
interactions between fibres and near-field lubrication interactions. The basis for the
simulation begins with the equations presented in § 1.2. We non-dimensionalize these
equations using a characteristic length scale lc = 2L, the total fibre length and time
scale tc =8μL3/kBT , which is proportional to a fibre’s rotational diffusivity. Note this
differs from the scaling used in the mean field theory and stability analysis because
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Figure 1. Solid line: Perturbation solution for the first eigenvalue corresponding to (2.18)
and (2.20) for nl3c = 1.0, and A = 20. Squares: Spectral solution to the eigenvalue (2.14) using
25 harmonics in the expansion. The left panel shows the growth rate vs. k for a fixed Péclet
number of Pe−1 = 10−3, while the right panel shows the growth rate vs. Peclet number for a
fixed k = 0.001.

resolution of time scales shorter than the sedimentation time is critical for evaluating
the role of Brownian motion on sedimentation stability. Additionally, for typical
particle lengths of the order of 1 μm, tc has a value of the order of 1 s. We may
therefore assume that the double layer is completely polarized at all time scales of
interest in the simulation.

Using these scalings, the equations describing fibre j ’s centre of mass and rotational
motion become

ẋj =

∫ 1/2

−1/2

vD(xj + pj sj ) dsj +
ln(2A)

4π
(I + pj pj ) · Fj (3.1)

ṗj = 12(I − pj pj ) ·
∫ 1/2

−1/2

[vD(xj + pj sj ) − PeEvD(sj )]sjdsj − 3 ln(2A)

π
pj ∧ Tj , (3.2)

where vD and vS are the dimensionless disturbance and circumferentially averaged
slip velocities, F and T are the dimensionless externally applied force and torque
and PeE is the electric Péclet number defined as

PeE =
8L3εE2

∞
kBT

= HPe
ln(2A)

π
. (3.3)

For the sedimentation problem considered, the net (dimensionless) force is a sum of
Brownian, lubrication and gravitational forces F = FB +FL +2Pe ẑ, and any applied
torque is solely due to Brownian motion.

3.2. Hydrodynamic interaction

3.2.1. Basic equations

The disturbance velocity at location r is computed using the modified Green’s
function of the periodic Stokes equations, Jp , given in Hasimoto (1958). Consider
an infinite periodic array of point forces with a unit cell of volume Vc, lattice
vectors {ai} and reciprocal basis {bi}. If the forces are localized at coordinates
rp + n1a1 + n2a2 + n3a3, Jp is given in a dimensionless form by

Jp(r) =
1

8π
[S1 I − ∇∇S2] (3.4)
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S1 =
2

πVc

∑
k �=0

e−2πik · (r−rp)

k2
(3.5)

S2 =
−1

2π3Vc

∑
k �=0

e−2πik · (r−rp)

k4
, (3.6)

where k = m1b1+m2b2+m3b3. The Green’s functions can be evaluated using traditional
Ewald sums (Hasimoto 1958) or a smooth mesh algorithm (Saintillan, Darve &
Shaqfeh 2005) as described below. The net disturbance at a point on fibre k is then
given as

vD(xk + sk pk) =

N∑
j=1

∫ 1/2

−1/2

K (xk + sk pk − xj − sj pj ) · f j (sj ) dsj (3.7)

K =

{
Jp j �= k

Jp − J j = k,

where the free space Oseen tensor J must be subtracted when j = k to ensure that
each fibre interacts with all periodic images, but not itself, as self-interaction is already
captured in the slender-body equation for the force density. In the limit as sj → sk ,
the proper limiting form of the expression Jp − J is used.

To compute the integrals in (3.7), the fibres are discretized with M quadrature points
and Gauss–Legendre quadrature is used. These integrals introduce MN additional
unknowns, the force distribution at along each fibre evaluated at each quadrature
point. To avoid the computational expense associated with additional unknowns, we
employ the same force distribution linearization of Harlen, Sundararajkumar & Koch
(1999), which was subsequently used in Butler & Shaqfeh (2002) and Saintillan et al.
(2005). The result of this linearization yields the following for f (s), where for each
fibre the M unknowns have been replaced by a single scalar stresslet S:

f (s) = F + 12s(T ∧ p + S p). (3.8)

The stresslet represents the contribution to the fluid stress due to particle rigidity
and must be solved for consistently using the relation (Santillan et al. 2006b)

Sj = − 2π

ln(2A)

∫ 1/2

−1/2

[vD − PeEvS] · pj sjdsj, (3.9)

which represents a set of N equations, one for each particle, coupled to all other
particle stresslets through the disturbance velocity term.

When the point of closest approach between two particles comes within a specified
multiple of the particle radius, near-field lubrication forces become important and
must be included in the expression of the total force. Because near-field hydrodynamic
effects are excluded as a result of the slender-body approximation, lubrication forces
are simply additive and the far-field hydrodynamic expressions need not be modified.
The force acting on two particles in close contact is dependent on their relative
orientations and velocities ḣ, as well as their distance of closest approach h. Originally
derived in Claeys & Brady (1989), we refer the readers to Butler & Shaqfeh (2002),
where the equations for the lubrication force for each interaction type are reproduced.

Because the lubrication forces are dependent on the each particle’s relative velocity,
the lubrication forces couple the equations of motion (3.1) and (3.2) with the stresslet
equations. The relative motions ḣ must therefore be solved simultaneously with the



372 B. D. Hoffman and E. S. G. Shaqfeh

stresslet equations for those particles experiencing lubrication interactions. For this
reason, lubrication interactions significantly increase the computational overhead of
the simulations because the size of the stresslet system that must be solved iteratively
also increases.

3.2.2. Smooth particle mesh Ewald (SPME) algorithm

The stresslet equations (3.9) may be solved directly (i.e. by matrix inversion)
if traditional Ewald sums are used because the stresslets appear explicitly in the
disturbance velocity. Ewald sums, however, are computationally expensive to compute
and severely limit the size of the system that may be studied. To overcome this issue,
we use an algorithm developed by Saintillan et al. (2005) for simulation of rigid
fibres : a smooth particle mesh Ewald algorithm. Motivated by that of Essman et al.
(1995), the algorithm makes use of the n ln n scaling of the fast Fourier transform
(FFT) to significantly reduce the cost of computing hydrodynamic disturbances. In
this algorithm, the disturbance velocities at each quadrature point for each fibre
are computed by interpolating the complex exponentials appearing in the Ewald
formulation of equation (3.4) onto a fixed grid and using the FFT to compute all
velocities simultaneously. The particle forces (and therefore stresslets) do not appear
explicitly; this demands an iterative solution for (3.9).

We omit the algorithmic details in this paper and refer the reader to Saintillan’s
work for further information.

3.3. Brownian motion

For simplicity of notation, we adopt the convention of Butler & Shaqfeh (2005) and
write (3.1) and (3.2) for all particles in a compact mobility formulation as{

ẋ
ṗ

}
= US + M ·

{
F0

F1

}
, (3.10)

where the superscript m on F represents the mth moment of the force distribution
Fm =

∫
f (s)smds and US is a vector describing the net particle motion due to the

surface slip velocity. From (3.1) and (3.2), it can be seen that

US =

⎧⎨⎩
0

−12PeE(I − p p) ·
∫ 1/2

−1/2

vS(s)s ds

⎫⎬⎭ .

Each vector in (3.10) represents the concatenation of the forces or velocities of
all particles and has therefore 3N (bracketed terms) or 6N (non-bracketed terms)
components. F0 is simply the total force vector F while F1 is related to the torque via

T = p ∧ F1 T ∧ p = (I − pp) · F1. (3.11)

M is the grand mobility tensor (6N × 6N components), which is only a function
of the suspension geometry and implicitly incorporates the stresslet contribution
to the force density as written in (3.8). The mobility formulation (3.10) allows for
convenient specification of the Brownian force via its first two moments as〈{

F0
B

F1
B

}〉
= 0

as well as 〈{F0
B

F1
B

}
⊗
{

F0F1
}〉

= 2δ(t − t ′)M−1,



Stability of Brownian sedimenting suspensions 373

which satisfies the fluctuation dissipation theorem. In our numerical simulations, we
discretely model the fluctuating Brownian force between time t and t + 
t using a
6N vector W with each component independently normally distributed with mean
0 and unit variance: {

F0
B

FB
1

}
=

√
2


t
B · W, (3.12)

where B satisfies M−1 = BBT . Theoretically, one could evaluate the inverse of the
mobility and determine B = M−1/2 (non-uniquely) via Cholesky decomposition or
diagonalization to obtain the Brownian force. However, when using the SPME
algorithm, one cannot separate the grand mobility tensor from the net force because
the velocity disturbances vD on each fibre are evaluated simultaneously. Rather, we
use an iterative method developed by Fixman (1986) in which we write the Brownian
force as a Chebychev polynomial expansion in the mobility. Computation details are
provided in Santillan et al. (2006d).

It should be noted that due to the constraint that each vector p must retain unit
length, the grand mobility tensor M must first be first factored (Butler & Shaqfeh

2005) as M = K · M̃ · K, where

K =

[
I 0

0 I − pp

]
.

The factorization is evident when (3.11) is substituted in (3.2). In our implementation,

Fixman’s algorithm is applied to M̃ followed by the application of the constraint
matrix K.

3.4. Integration

Once the Brownian forces are computed as discussed in § 3.3, the net force is compiled
and the total particle velocities and stresslets are determined. Although high-order
integration schemes may be used, we employ a simple Euler stepping to calculate the
net displacement between time steps. We rationalize this choice by calling attention
to the Brownian force term that appears as a realization of a random variable with
standard deviation of O(
t−1/2). Upon integration, the net displacements {
x, 
 p}
are only determinable to within O(
t1/2). Thus, extra computational effort required
to enhance integration accuracy for the deterministic components of the velocity
equations is wasted.

We choose a fixed time step 
t based on the desired resolution of time
scales within the simulation. To prevent collisions (particle overlap), this ‘global’
time step is separated into n ‘local’ time steps of non-uniform size δti , where

t =

∑n

i =0 δti . For each local time step, the calculated Brownian force and far-
field hydrodynamic interactions remain constant, while the near-field lubrications and
particle displacements are updated based on the current configuration. The magnitude
δti is chosen after each local time step by determining the minimum estimated time
for fibre collision within the suspension. Butler & Shaqfeh (2002) found that this
local lubrication update approximation greatly enhanced simulation speed but did
not affect overall dynamics given a sufficiently small 
t .

Our Euler stepping algorithm is simply given by{
x

p

}
(t + δt) =

{
x

p

}
(t) +

[
US + M ·

{F0

F1

}
+ ∇ · M

]
δt, (3.13)
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Figure 2. Instability growth rate ω vs. wavenumber k for various inverse Péclet numbers, for
nl3c = 0.1 and A =20, solved for using the spectral expansion method described in § 2.2. The
effect of Brownian motion is to suppress both the growth rate of the instability and to reduce
the range of wave-numbers for which the suspension is unstable.

where the drift term is explicitly added because it is not implicitly captured in lower-
order integration schemes (Banchio & Brady 2003). At time t , we estimate the drift
velocity ∇ · M as is done by Banchio & Brady (2003) by first calculating the Brownian
velocity UB(t) as

UB(t) = M ·
{

F0
B

F1
B

}
,

where the Brownian force and torque are computed as described in the previous
section. We then temporarily update the particle locations using only the Brownian
velocity via {

x

p

}
(t + δt1) =

{
x

p

}
(t) + UB(t)δt1

and re-evaluate the Brownian velocity UB(t + δt) using the updated positions for the
evaluation of the mobility but the same Brownian forces. It is a simple exercise to show
that ∇ · M = 
t/2δt1(UB(t + δt1) − UB(t))+ O(
t), and this approximate realization of
the drift velocity remains constant throughout the global time step 
t .

4. Results and discussion
4.1. Effects of Brownian motion

We first utilize the spectral solution method for the mean field stability analysis
to analyse the Brownian (no ICEP) problem described in § 2.1. Figure 2 shows the
instability growth rate Im(ω∗) as a function of scaled wavenumber k∗ = k/

√
2β and

growth rate ω∗ = ω
√

30/β . The scaling was chosen such that limk→0 Im(ω∗) = 1 and
Im(ω∗) = 1 for k∗ = 1 and Pe−1 = 0. It can be seen that as the Péclet number is
decreased (corresponding to strong Brownian motion relative to settling velocity),
the growth rate of the instability is suppressed and the wavenumber at which the
instability disappears becomes smaller. The origin of both qualitative features is
clearly visible from the first correction in the perturbation solution to the stability
eigenvalue problem (2.20). Specifically, centre of mass diffusion tends to smooth
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Figure 3. A stability phase contour plot of dimensionless number density vs. gravitational
Péclet number for A = 20 and k = 0.2513. The contour colours (greyscale) represent the
instability growth rate Im(ω). The zero contour represents a neutrally stable suspension. The
white open circles correspond to unstable suspensions determined from Brownian dynamics
simulations using the same parameters. The white squares correspond to stable simulated
suspensions.

out short wavelength (large wavenumber) fluctuations because particles can quickly
diffuse out of regions of higher concentration relative to the time scale of instability
formation. This effect can clearly be seen in figure 2: as the Péclet number decreases,
the wavenumber corresponding to a neutrally stable suspension ω = 0 decreases.
More important in the suppression of the instability is rotational diffusion, which
randomizes particle orientations and counteracts the hydrodynamic torque applied
through the buoyancy-driven instability mechanism. The primary effect of rotational
diffusion is to dampen the growth rate of the instability for a fixed k. As Pe → 0 the
instability curve shrinks asymptotically to the origin; however, due to the singular
limit at k = 0 one can always find a wavenumber at fixed Péclet number for which the
instability growth rate is positive. Physically this limit corresponds to an unbounded
suspension container but is of little physical consequence.

Figure 3 is a contour plot of the instability growth rate Im(ω) as a function of both
the gravitational Péclet number and number concentration of particles for particles
with A= 20. A logarithmic scale has been used to magnify the region of stable
suspensions; however, it should be noted that the region of Brownian stabilization
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occurs in a relatively small region 0 < Pe � 2. Marked on the figure are sample points
from the Brownian dynamics simulations described in § 3, with squares representing
stable suspensions and circles representing unstable ones (within the simulation time).
To evaluate whether the instability will occur, we have used the criterion that the τ

time moving average of the mean sedimentation velocity scaled by the maximum single
particle settling velocity, MA(t, 〈Uz〉 /UM, τ ), exceeds and remains above 1.0 over the
course of the simulation. We have chosen this interpretation of stability from our
simulations for consistency with previous literature (Butler & Shaqfeh 2002; Saintillan
et al. 2006b) and because the sedimentation velocity provides a reliable indicator for
both essential features of the instability: formation of density perturbations and the
growth of these perturbations over time. The moving average is simply defined as

MA (t, x, τ ) =
1

τ

∑
i

x(t + δti),

where
∑

i δti = τ . The simulation maximum time is chosen based on the sedimentation
time ts , the time scale over which the instability develops from an isotropic suspension
in the absence of Brownian motion, and is usually set at 120 ts . Based on the
non-dimensionalization scheme employed in the Brownian dynamics simulation, we
have chosen τ = ts/tc = π/2Pe ln(2A) to compute the moving average. The moving
average exceeding 1.0 is indicative of cluster formation (and thus instability) because
hydrodynamic interactions within clusters screen internal particles from viscous drag,
allowing the cluster to achieve a higher settling velocity than an isolated fibre
aligned with gravity in Stokes flow. We find that for fixed system sizes within our
computational limitations (approximately 500 Brownian particles or several thousand
non-Brownian), the fluctuations in average sedimentation velocity grow large for small
Péclet numbers, and a moving average is necessary to smooth the fluctuations and
isolate the underlying trend associated with cluster and streamer formation. This can
be seen by considering the variance of the component of the Brownian velocity in
the direction parallel to gravity, 〈UBzUBz〉 /U 2

M ∼ Pe−2
t−1; for a fixed time step the
fluctuations decay as Pe−2, so the moving average window decreases with increasing
Péclet number.

We find that in general, the mean field theory predicts the onset of instability
quite well. It should be noted, however, that prediction of instability very close
to the neutral suspension curve ω = 0 and for small nl3c is very difficult, as it
may require more simulation time than is feasible. Additionally, neglecting near-
field interactions, as well as stress coupling in the hydrodynamic interactions within
the mean field approximation may result in slight differences in both the Péclet
number and concentration at which an instability occurs. The trend, however, is
correct: as we move from left to right on the phase contour plot (increasing number
concentration), crossing the neutral stability line at a constant Péclet number, the
suspension becomes unstable. This occurs because the rotational velocity induced
by the instability formation, increases with number concentration as a result of the
increased magnitude of the density fluctuations.

In figure 4, we show the Brownian dynamics trajectories of two suspensions, both
at Pe= 10 and nl3c = 0.2, but with varying wavenumber. Examining the averaged
orientation trajectories relative to the direction of gravity (right panel), we see that
for both values of k, suspensions are very nearly isotropically oriented for the
majority of the simulation, indicating strong rotational diffusion. For the suspension
for k = 0.2513, however, the mean orientation departs significantly from isotropic by
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Figure 4. Brownian dynamics trajectories of a suspension with Pe= 10, A = 20 and nl3c = 0.2,
varying the minimum allowable k from 0.2513 to 1.46. The suspension is stable for large
wavenumber (smaller boxes) but becomes unstable as k is decreased. Left panel: the moving
average (MA) of the sedimentation velocities. Right panel: the MA of the second moment of
p in the direction of gravity.

t = 250. As k is decreased from 1.46 to 0.2513 by changing the simulation box size,
the suspension clearly becomes unstable. Although the average sedimentation velocity
diverges from 1.0 in the unstable suspension, centre of mass diffusion acts to prevent
rapid densification of streamers. Because the instability is hydrodynamic in nature and
therefore long-ranged, we observe the divergence of the sedimentation velocity with
increasing Péclet number more quickly than increased orientation with gravity, the
latter of which is magnified by excluded volume and lubrication interactions within
dense clusters. This result agrees with the predictions of the mean field analysis as
presented in figures 2 and 3, which predict a decreasing growth rate with increasing
wavenumber at constant Péclet.

Figure 5 shows images of the simulated structure of two suspensions at a number
concentration of nl3c = 0.6 and particles of A= 20, after 60 sedimentation times ts/tc.
Clearly, the suspension in the top panel maintains a nearly isotropic structure in
both orientation and centre of mass while the bottom suspension develops a single
dense streamer surrounded by a clarified fluid, oriented preferentially in the direction
of gravity. Generally, simulations of the unstable suspensions produce a single dense
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Figure 5. Image of a stable and unstable Brownian suspension in a box of aspect ratio 25:5:5,
nl3c = 0.6, A = 20 after 60 sedimentation times ts/tc . Top panel: Pe =0.5 (log10(Pe) = −0.3),
corresponding to the ‘stable’ region on the above phase plot. Bottom panel: Pe= 25
(log10(Pe) = −1.40), corresponding to the ‘unstable’ region. A streamer clearly forms in
the unstable suspension and the moving average of the mean sedimentation velocity
MA(t, 〈Uz〉 /UM, τ ) exceeds 1.0 (see below).

streamer as opposed to multiple streamers because the largest wavelength disturbance
has the highest growth rate. In a non-periodic system, however, density stratification
or wall effects can contribute to a wavenumber selection as was observed in point
particle simulations by Saintllian et al. (2006a).

In figure 6 we present the trajectories associated with figures 3 and 5. The two left
panels show the moving average of the mean sedimentation velocity for various Péclet
numbers, while the right panels show the mean orientation of the fibres relative to the
direction of gravity. As is predicted by the mean field theory, the suspension with the
largest Péclet number, Pe=25, (weakest Brownian motion) is the most unstable and
therefore has the highest growth rate, with the mean normalized sedimentation velocity
diverging quickly and irreversibly from 1.0. In this case, the mean orientation 〈pzpz〉
quickly departs from the orientationally isotropic value of 1/3 due to densification
and cluster formation.

As the Péclet number is reduced, corresponding to increased dominance of thermal
motion, the instability forms more slowly, as demonstrated by the suspension with
Pe= 5 (top panel). In this case, the mean velocity diverges more slowly, and the
orientation remains nearly isotropic. We conclude that although the Pe= 5 case
is unstable, it is only marginally so, because the instability mechanism is nearly
counterbalanced by rotational diffusion as evidenced by the orientation plot (and
as explained above, the orientation is a lagging indicator). As the Péclet number
is subsequently reduced to 2.5 and 0.5, we observe stabilization of the suspension
characterized by isotropic orientation distributions and mean velocities that do not
remain above 1.0 for a significant amount of simulation time. Excursions of the
velocity above 1.0 in both cases are simply due to Brownian fluctuations and cannot
be completely eliminated. Increasing the moving average window size reduces this
effect, but requires significantly more computer time.
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Figure 6. Left panels: Trajectories of the mean suspension sedimentation velocityUz scaled by
the maximum velocity of an isolated particle for a suspension of particles with A = 20, nl3c = 0.6,
and k = 0.2513 for Péclet numbers of 0.5, 2.5, 5, and 25 (log10(Pe) = −0.3, 0.4, 0.7, 1.4). When
the instability develops for sufficiently large Péclet number, dense clusters and streamers form
within the suspension and cause the average scaled sedimentation velocity to exceed 1.0. Right
panels: The average orientation with respect to the direction of gravity. Lubrication and
excluded volume interactions within the streamer tend to rapidly align particles with gravity.
This effect is only observed for the Pe = 25 case.

4.2. Brownian motion and ICEP

In § 4.1, we considered solely the effect of Brownian motion on the sedimentation
instability. We now consider the net effect of Brownian motion, sedimentation and
induced charge electrokinetic phenomenon on the instability, which constitutes a
rich interplay of physical phenomena. Saintillan et al. (2006b) addressed stabilization
of a suspension of non-Brownian particles through ICEP and concluded that the
rotational velocity due to the instability mechanism (i.e. concentration perturbations)
could be effectively cancelled by rotation due to the surface slip induced by ICEP
in a sufficiently strong electric field. In their work, they present a stability phase
diagram as a function of H and nl3c at a fixed k. They find that the critical value of
H to achieve stabilization grows as (nl3c )

0.54 because the angular velocities induced by
concentration fluctuations approximately balance those of ICEP with this scaling.

In contrast, Brownian suspensions subjected to an electric field do not
deterministically align with the electric field; rather, the alignment in the suspension
is characterized by a balance between Brownian torques and electrokinetic rotation
through a probability density function ((2.4) above). Therefore, in sedimenting
Brownian suspensions in electric fields, thermal motion will change the orientation
distribution to state that is less stable to concentration fluctuations than a more
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Figure 7. Instability growth rate vs. dimensionless electric field strength (H ) for several inverse
Péclet numbers for a suspension with A = 20, k = 10−3 and nl3c = 1.0. For small H , the most
unstable suspensions occur for small inverse Péclet (weak Brownian motion). There is a
behavioural inversion for large H and intermediate inverse Péclet numbers, where thermal
motion disrupts the stabilizing effect of alignment.

aligned state; this occurs when the Brownian torque partially offsets the alignment
effects of ICEP. Recalling the conclusions from the previous section, this suggests
that there exists a parameter set for which, at a fixed electric field strength relative to
gravity, Brownian motion will destabilize the suspension through randomization of
the otherwise stabilizing alignment.

We expect the effects of the electric field to be approximately cancelled when
| ṗB | ∼ | ṗICEP |, where | ṗB | is the magnitude of the rotation induced by Brownian
motion. From (3.2), this occurs approximately when PeE ∼ 3 ln(2A)/π, or about 3 for
a particle with aspect ratio 20. The suspension will only be destabilized via thermal
motion if it would otherwise be unstable with no electric field present. This condition
is summarized by figure 3.

We present in figure 7 the results of the mean field stability analysis in which we
vary the strength of the electric field relative to gravity (represented by the parameter
H defined in 2.13) at a fixed wavenumber, number concentration, and gravitational
Péclet number. The trend for all values of Péclet number examined is that increasing
electric field strength lowers the instability growth rate, stabilizing the suspension.
This result is consistent with observations by Saintillan et al. and can also be seen
in figure 8, where we present the effect of increasing field strength for a constant
Péclet number and varying wavenumber. Note, however (in figure 7), that at low
field strengths, the suspensions corresponding to the weakest Brownian motion are
the least stable (low Pe−1), while for high field strengths (H � 0.3) the suspensions
corresponding to strongest Brownian motion are the least stable. This behavioural
inversion agrees with our predictions of a region of Brownian-induced destabilization.

Figure 9 shows the instability growth rate as a function of wavenumber for fixed
H = 1.0 and Péclet number. As the Péclet number decreases (going from curves
1–4), the thermal motion first decreases the instability growth rate (curves 1–2,
PeE ∼ 117/23) primarily as a result of centre of mass Brownian motion; next, the
instability growth rate increases (curves 2–3 PeE ∼ 23/3.9) as a result of the thermal
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Figure 8. Instability growth rate vs. wavenumber for various electric field strengths for a fixed
Péclet number of 50. A = 20, and nl3c = 1.0. The suspensions are consistently most unstable for
small wavenumber. Stabilization occurs as H is increased.
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Figure 9. Instability growth rate vs. wavenumber for various inverse Péclet numbers at a
constant H = 1.0 and nl3c =1. A maximum growth rate occurs for small wavenumbers and
intermediate Péclet numbers as Brownian motion offsets the ‘stability gains’ achieved through
ICEP stabilization. At higher Péclet numbers the Brownian motion becomes the dominant
stabilization mechanism and the growth rate declines.

destabilization mechanism. Finally, the growth rate continues to decrease as thermal
motion becomes dominant (curves 3–4 PeE ∼ 3.9/1.2). The electric Péclet numbers
presented are in a reasonable agreement with our scaling argument presented above
(i.e. PeE ∼ 3 for destabilization). We note that centre of mass diffusion always acts
to stabilize suspensions because it uniformly disperses regions of high concentration
without interfering with the stabilizing effects of the electric field.
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Figure 10. Left panels: Trajectories of the mean suspension sedimentation velocityUz scaled
by the maximum velocity of an isolated particle for a suspension of particles with A = 20,
nl3c = 0.6, k = 0.2513 and H = 0.6 for gravitational Péclet numbers of 0.5, 10, 20 and 100
(log10(Pe) = −0.3, 1.0, 1.3, 2.0). The electric field stabilizes the suspension in the case of
weak Brownian motion (Pe= 100, top) by resisting the rotation induced by concentration
fluctuations. As thermal motion becomes more important, the electric stabilization effect is
minimized and the instability occurs (Pe= 10/20, bottom). As the Péclet number is reduced
further, Brownian motion dominates and the suspension is stabilized in an isotropic orientation
(top). Right panels: The average orientation with respect to the direction of gravity. For weak
Brownian motion the particles are very aligned and reduce towards isotropic orientation as
the Péclet number is lowered. In this case, suspensions characterized by extremes in alignment
(very high and isotropic) are stable (top panels).

The results of our scaling argument and mean field analysis are strengthened by
identical observations from our Brownian dynamics simulations. In figure 10 we
present average sedimentation velocities and orientation in a suspension with A= 20,
nl3c = 0.6, k =0.2513 and fixed H = 0.6 for gravitational Péclet numbers of 0.5, 10,
20 and 100. Clearly, for high Péclet numbers (weak Brownian motion) the electric
field strongly aligns the suspension, resisting hydrodynamic torques that cause the
instability to form. This is shown in the top-right panel where the average orientation
in the direction of gravity approaches 0.85. The average sedimentation velocity within
the suspension never exceeds 1.0, indicating an absence of clusters that characterize
an unstable suspension. As the Péclet number is reduced (strengthening thermal
motion), the effect of electrokinetic alignment is mitigated and the average scaled
sedimentation velocity clearly exceeds 1.0, with Im(ω)(Pe = 10) < Im(ω)(Pe = 20). The
instability growth rate therefore must pass through a maximum between Pe=100
and Pe= 20, which correspond to PeE = 70 and PeE = 14 (cf. (3.3)). At substantially
lower gravitational Péclet numbers, the strength of Brownian motion dominates and
again stabilizes the suspension. We present in figure 11 simulation images after 60
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Figure 11. Snapshots of suspension structure for A = 20, nl3c = 0.6, k = 0.2513 and H = 0.6 at
gravitational Péclet numbers of 0.5 (top), 10 (mid-top), 20 (mid-bottom) and 100 (bottom).
The top and bottom images show suspensions stabilized in an isotropic and aligned state,
respectively, while the middle images show clustering characteristic of an unstable suspension.

sedimentation times of suspensions with a fixed H = 0.6 and varying Péclet number.
The top and bottom images show suspensions stabilized in an orientationally isotropic
and aligned state, respectively, while the middle images show clustering characteristic
of an unstable suspension. These observations are clearly in agreement with our
stability analysis results and simulated sedimentation trajectories.

Our results demonstrate that the phase plot presented in Saintillan et al. (2006b) is
an incomplete description of the phase space characterizing the instability. Foremost,
Saintillan et al. present results in the limit of no thermal motion (Pe → ∞) which
therefore do not capture the initially destabilizing effects of Brownian motion.
Second, we have shown through our mean-field theory and Brownian dynamics
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simulations that at fixed electric field strength and Péclet number, the onset of the
instability is wavenumber dependent, occurring only for sufficiently large box sizes.
For a complete description of the concentration instability, thermal motion, box size,
and number density must all be considered.

A thermally induced instability is perhaps somewhat counter-intuitive. In general,
one might expect Brownian motion to counteract the destabilizing effects of
gravitational settling, leading to a stable suspension. We have, however, identified
a system in which thermal motion can act to destabilize suspensions by counteracting
the effects of an otherwise stabilizing field. This phenomenon of Brownian-induced
demixing may occur for a variety of other physical systems, and may be observed
when the stability of a system is determined by the response of a microstructural
variable (i.e. particle alignment, particle separation distance, etc.) to an external field
or interparticle potential. A similar analysis to the one performed here may thus be
applied to such systems as particle stabilized emulsions or electrostatically stabilized
sols, for example.

In summary, we have shown via Brownian dynamics and mean field theory that
Brownian motion plays a crucial role in determining the stability of sedimenting
suspensions of anisotropic particles. Depending on the collective effect of many
fundamentally different physical interactions, Brownian motion can either act to sta-
bilize or destabilize sedimenting suspensions. In suspensions with no external torques,
Brownian motion stabilizes the mean sedimentation velocity by randomizing the
particle orientation towards an isotropic state, resisting any collective hydrodynamic
effects that lead to instability. If external torques are applied (hydrodynamically
via ICEP or otherwise) that tend to align the particles and provide an alternate
stabilization mechanism, the randomization caused by Brownian motion may have a
destabilizing effect. This is of critical importance when designing devices that utilize
the collective physical phenomena to achieve function. For instance, in the design of a
‘nano-barcode’ reader, both stability and alignment (for detection purposes) must be
assured, so one should operate in a regime of electric field strengths which counteract
both the instability mechanism created through concentration fluctuations as well as
destabilization by orientational randomization due to thermal motion.

The authors would like to acknowledge the contribution of David Saintillan, who
laid much of the foundation for this work. We would also like to thank the Army
High Performance Computing Research Center (AHPCRC) at Stanford as well as
the National Science Foundation under Grant CBET-0729771 for funding.

Appendix. Spectral solution details
Beginning with (2.12), we make the substitution c̃ =

∑q=∞
q=0

∑s=q

s=−q aqsY
s
q , giving

0 = −iω
∑
qs

aqsY
s
q +

2
√

πiβΨ

k2
( p · ẑ)( p · k)a00

+
1

2
HG||G⊥

{[
1 − 3( p · e∞)2

]∑
qs

aqsY
s
q + ( p · e∞)e∞ ·

∑
qs

aqs∇ pY
s
q

}

− 2
√

πiβh( p)

3k2
( p · k) [(e∞ · ẑ) − ( p · e∞)( p · ẑ)] a00
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− i

2
( p · k)( p · ẑ)

∑
qs

aqsY
s
q + 3Pe−1

∑
qs

aqsq(q + 1)Y s
q

+
1

4
Pe−1

[
k2 + ( p · k)2

]∑
qs

aqsY
s
q , (A 1)

where we have used the following properties of the spherical harmonics to simplify
the expression: ∫

Y s
q d p = 2

√
πδq0δs0,

∇2
pY

s
q = q(q + 1)Y s

q .

Noting that the spherical harmonics are orthonormal over the inner product space
defined, ∫

Y s
q Y s ′

q ′ d p = δqq ′δss ′, (A 2)

we then take the inner product of (A 1) with Y s ′

q ′ (and replacing e∞ with ẑ for electric
fields aligned in the direction of gravity), giving

0 = −iωaq ′s ′ +
2
√

πiβa00

k2

∫
Ψ ( p · ẑ)( p · k)Ȳ s ′

q ′ d p

+
1

2
HG||G⊥

{∑
qs

aqs

∫ [
1 − 3( p · ẑ)2

]
Y s

q Ȳ s ′
q ′ d p +

∑
qs

aqs

∫
Ȳ s ′

q ′ ( p · ẑ) ẑ · ∇ pY
s
q d p

}

− 2
√

πiβa00

3k2

∫
h( p)( p · k)

[
1 − ( p · ẑ)2

]
Ȳ s ′

q ′ d p − i

2

∑
qs

aqs

∫
( p · k)( p · ẑ)Y s

q Ȳ s ′
q ′ d p

+3Pe−1q ′(q ′ + 1)aq ′s ′ +
1

4
Pe−1k2aq ′s ′ +

1

4
Pe−1

∑
qs

aqs

∫
( p · k)2Y s

q Ȳ s ′
q ′ dp. (A 3)

To proceed, we express the spherical harmonics in a more convenient form showing
explicitly their dependence on the spherical coordinates θ ∈ [0, 2π] and φ ∈ [0, π].

Y s
q = NqsL

s
q(cosφ)eisθ ,

where Ls
q are the associated Legendre polynomials of degree q and order s, and we

take the vector p to be defined on the unit sphere as p = {cos θ sinφ, sin θ sin φ, cosφ}.
Nqs is a normalization constant given by

Nqs =

√
2(q + 1)(q − s)!

4π(q + s)!
.

Many of the integrands in (A 3) are simply products of the spherical harmonics with
projections of p; for instance, the ‘dipole’ term p · ẑ may be written in terms of the
spherical coordinates as cos φ. Using this notation, we make use of several identities
pertaining to the product of multipoles and the spherical harmonics. Those relevant to
this discussion are listed in table 1. These identities reduce the multipolar integrands
(through recursive application) to sums of spherical harmonics of differing degree. We
may then use identity (A 2) to evaluate the remaining integrals; the results obtained
are algebraic combinations of the coefficients A, B and C (see table 1), which avoids
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Product Result Coefficients

cosφY s
q A1

qsY
s
q+1 + A2

qsY
s
q−1 A1

qs =
[

(q − s +1)(q + s +1)
(2q +1)(2q + 3)

]1/2

A2
qs =

[
(q − s)(q + s)

(2q − 1)(2q + 1)

]1/2

eiθ sin φY s
q B1

qsY
s+1
q+1 + B2

qsY
s+1
q−1 B1

qs = −
[

(q + s +1)(q + s +2)
(2q +1)(2q + 3)

]1/2

B2
qs =

[
(q − s)(q − s − 1)
(2q − 1)(2q + 1)

]1/2

e−iθ sin φY s
q C1

qsY
s−1
q+1 + C2

qsY
s−1
q−1 C1

qs =
[

(q − s + 1)(q − s +2)
(2q + 1)(2q + 3)

]1/2

C2
qs = −

[
(q + s)(q + s − 1)
(2q − 1)(2q +1)

]1/2

Table 1. Spherical harmonic identities used in reducing the multipolar integrands
to simple products of harmonics.

numerical integration and greatly enhances solution speed. As an example, taking the

wave-vector k = {k, 0, 0}, the term
∫

( p · k)2Y s
q Ȳ s ′

q ′ d p can be evaluated as:

1

k2

∫
( p · k)2Y s

q Ȳ s ′

q ′ d p =
1

4
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1
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]
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2
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2
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1
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+A2
qsA
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2
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]
+

1
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qsC
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+C2
qsC

1
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qsC
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]
To evaluate the gradient term ∇ pY

s
q d p, we express the gradient operator ∇ p in

spherical coordinates on the unit sphere as ∇ p = θ̂
sinφ

∂
∂θ

+ φ̂ ∂
∂φ

, where

θ̂ = {− sin θ, cos θ, 0},
φ̂ = {cos θ cosφ, sin θ cos φ, − sinφ}.

Using the relation

∂Y s
q

∂φ
=

1

sinφ

{
q cos φY s

q − αqsY
s
q−1

}
,

where αqs is defined as

αqs ≡
[
(2q + 1)(q2 − s2)

2q − 1

]1/2

,

as well as the relations in table 1, we may write the projection of the gradient ẑ · ∇ pY
s
q

as

ẑ · ∇ pY
s
q = −qA1

qsY
s
q+1 −

(
αqs − qA2

qs

)
Y s

q−1.

Finally, the multipole harmonic relations in the table may be used to reduce the
integral containing the gradient operator to an algebraic combination of A, B, C and
α. The remaining terms that include integrals of h( p) and Ψ are evaluated numerically
after the arguments are reduced as much as possible.

Once the harmonic integrals are computed, (A 3) becomes a linear equation for
the harmonic expansion coefficient aq ′s ′ . Clearly, the equation is coupled to all other
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coefficients through the irreducible sums. However, for a finite truncation of the
sums, we may write the set of equations (one for each coefficient) in the form
of an eigenvalue equation M · a =ωa, where a is a vector corresponding to all of
the expansion coefficients and ω is one solution to the eigenvalue problem. Once
M is computed for a finite number of harmonic modes (Q), a software package
such as MATLAB is used to evaluate the eigenvalue set, {ω(i)}, which is a discrete
approximation to the first (Q + 1)2 eigenvalues of (2.12).
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